
Intro to DevOps
Automation on AWS

WHITE PAPER



CONTENTS

1.	 Intro to DevOps Automation on AWS	 3

2.	 The DevOps Ideal	 4

3.	 What is DevOps?	 4

4.	 A DevOps Definition	 6

5.	 DevOps Automation	 6

6.	 Practice 1: Document	 8

7.	 Practice 2: Test	 8

8.	 Practice 3: Code	 9

9.	 Practice 4: Version	 10

10.	 Practice 5: Continuous	 10

11.	 Practice 6: Monitor	 11

12.	 �Practice 7: Microservices	 12

13.	 �Practice 8: Self-Service	 12

14.	� Getting Started	 13

	 Assess	 13

	 Plan	 15

15.	 Summary	 16

16.	 Additional Resources.	 17



Intro to DevOps Automation on AWS | 3 

Our guiding principle with customers is to automate all 
processes until they can be run from the click of a button 
and from a single command. The reason we do this is 
to reduce human bottlenecks. Anytime a human needs 
to run a process, it delays feedback and its correction. 
By eliminating these bottlenecks, teams can release 
software systems whenever they choose to do so. As 
illustrated in Figure 1, we apply a six-step heuristic to all 
of these processes. The six steps are: document, test, 
code, version, continuous, and monitor.

This is another way of saying that we use good software 
engineering practices when it comes to infrastructure  
and that infrastructure code works as part of a 
larger ecosystem of techniques and tools. Additional 
considerations include microservices and self-service 
mechanisms — which are approaches and principles 
around the architecture in how you deliver your  
software systems.

1.
Intro to DevOps Automation On AWS

Figure 1: Introduction

Document Test Code Version

Continuous Monitor Microservices Self-service



4 |

Any authorized team member can have an idea in the 
morning and have it confidently deployed to production 
in the afternoon of the same day.

Let’s dissect this statement a bit...

Any authorized team member - This means any cross-
functional team member (e.g. application developer, 
database, UI/UX, QA/Testing, or Infrastructure) who is 
trusted by the team.

An idea - This might be a feature, a fix or whatever 
and this might be any change: application code, 
configuration, infrastructure, or data. In other words, 
anything that makes up the software system.

Confidently deployed - This means it’s performed 
securely, with reduced risk, and using a single path to 
production. You’re confident it’s going to go through 
the same approved process every time on its way to 
production.

Afternoon - This means there’s a short cycle time as it 
goes through a single path to production. You also know 
it’s not a toy as it’s going to production.

2.
The DevOps Ideal

3.
What is DevOps?

DevOps is a portmanteau of the words representing 
“Development” and “Operations” teams, but it’s really 
more about representing the entire value stream.

What you see in Figure 2 is similar to what AWS shares 
in some of its DevOps talks — by relating DevOps 
to something you’re likely familiar with: the software 
development lifecycle.



Intro to DevOps Automation on AWS | 5 

Deployment pipeline

Feedback loop

Plan Monitor

Build ReleaseTest

Developers Customers

Figure 2: What is DevOps?

This might be for a web application or for a service. 
On the one side, you have customers and the other, 
developers. A developer comes up with an idea for a new 
feature, implements it and then puts it through a process 
of building, testing, and going through a release process 
until it is delivered to production where your customers 
actually start using it. It’s only once it gets into the hands 
of your customers that you start to learn from it. You can 
get usage data, get direct feedback from customers, or 
start to make informed decisions on what to work on 
next. Based on this, you might decide to update or
improve the feature, or even develop a new feature — 
and then the feedback loop starts again.

There are two key points to consider:

•	 The faster you’re able to get through this loop 
	 determines how responsive you can be to customers 
	 and how innovative you are

•	 From your customer’s perspective, you’re only 
	 delivering value when you’re spending time on 
	 developing new features

Therefore, you want to maximize the time you are 
spending on developing new features and minimize 
the time you are spending on the process for building, 
testing, and releasing software systems.



6 |

So, it’s really these two things that makeup DevOps. As 
a result, any efficiency you can drive into the middle to 
increase these feedback loops is DevOps. In addition, 
though it’s to be expected, it often confuses people 
because this could mean changes to the culture, 
organization, process, or tooling. Improving anything in 
this feedback loop is what DevOps is all about.

4.
A DevOps Definition

From our perspective, the definition of DevOps is:

Confidently speed up feedback loops through 
organizational, cultural, process, and tooling changes 
as a means to increase experimentation, increase 
confidence, reduce risk, and reduce costs.

While the other facets are important, the focus of this 
whitepaper will be on tooling and automation.

5.
DevOps Automation

In automating the entire software delivery lifecycle, teams 
can deliver software at the click of a button. Every part 
of the software delivery process is automated — from 
commit to production. This includes the application code, 
configuration, infrastructure and data — really everything.

One way to visualize this is to imagine a factory assembly 
line where cross-functional engineers work on various 
parts of the software as it moves in its lifecycle.

In the past, teams might only deliver software every 
few months or so — because of manual, error-prone 
processes. Often pieces of the delivery package go back 
and forth between teams separated by silos. This is a 



Intro to DevOps Automation on AWS | 7 

long, drawn-out and expensive exercise with the final 
package assembled at the last minute with teams vowing 
never to repeat it again.

With DevOps Automation, software can be delivered 
several times a day, once a week or as often as you want - 
it’s always in a releasable state.

When compared to traditional delivery methods, this offers 
two key advantages. The first is that the software is always 
ready to release meaning you do not stop and make a 
special effort to release the software. The second is that 
there aren’t any walls between the teams. Instead, there 
are autonomous teams made up of developers, testers, 
infrastructure, etc. all contributing to a single path to 
production.

We’re not just talking about application developer changes 
here. No matter if it’s a change to the infrastructure, 
data or whatever; the entire package gets built, tested, 
analyzed and deployed. When it passes all these checks, 
it becomes a release candidate for potential release to 
users, if the business chooses to do so.

Now, when a problem is discovered, quick feedback 
notifies team members that something’s wrong that needs 
to be fixed and the assembly line stops. This is when team 
members make it a priority to fix the error and commit it so 
that it moves along in the path to production.

So, in summary, it’s concerned with all parts of the 
software system and how all team members work as part 
of this single path to production. This way, software gets 
to users quicker and in a more predictable manner.

To see a video that visualizes this, go to  
https://www.youtube.com/watch?v=SIaVsG7m8n4

https://www.youtube.com/watch?v=SIaVsG7m8n4


8 |

6.
Practice 1: Document

If you are working on a new project, you might first  
write documentation for manually provisioning software 
system resources in such a way where they can be 
automated later.

If it’s an existing project, you might need to rewrite the 
documentation so that it can be automated. If you’re 
already familiar with a set of tools and technology you’re 
configuring, you might jump right into writing automated 
tests. Once the tests and code are committed to version-
control for a particular process, we usually don’t have 
need for this documentation, so we often remove it.

There’s also a purpose to documentation outside of 
provisioning and configuring resources. Most ideally, you 
want the ability to codify the formatting as well. This way 
you can version it more easily. An example of defining 
documentation that’s code is using Markdown.

You might define your documentation and diagrams 
using tools like CloudFormation Designer, Confluence, 
Markdown, and Cloudcraft.

7.
Practice 2: Test

After writing the initial documentation, you might write 
automated infrastructure and deployment tests based 
on the documentation and/or as a way of describing the 
system specifications for infrastructure, environments 
and deployments. We tend to write infrastructure/
deployment tests based on risk not on achieving “100% 
code coverage” (which is a fantastically elusive concept 
in infrastructures anyway) and as a way to describe what 
the system should do. An example of an infrastructure



Intro to DevOps Automation on AWS | 9 

8.
Practice 3: Code

Treat everything as code: the application code, the 
configuration, the infrastructure and the data. Whether 
it’s the infrastructure, the build, the deployment or the 
application or service, treat everything as a first-class 
software artifact.

Some example infrastructure as code tools include:

•	 AWS CloudFormation

•	 Docker

•	 Chef

For example, in AWS CloudFormation you define 
everything in a domain-specific language via JSON 
or YAML and it’s all in code. Therefore, you can use 
something like AWS CloudFormation to provision your 
servers, network, storage, and databases - all of this  
in code.

test platform we use is ServerSpec, but there are also 
some interesting ways to instrument monitoring to 
perform tests and remediate in production too.

Some example testing and static analysis tools you 
might use include:

•	 Running tests via AWS Lambda and AWS CodeBuild

•	 Gauntlt

•	 config-rule-status

•	 inspector-status

•	 ServerSpec



10 |

9.
Practice 4: Version

Next, ensure all assets are versioned - application and 
test code, configuration, infrastructure and data in 
version-control systems like Git. This also includes build 
and deployment scripts, and deployment pipelines as 
well - all of it can be defined in code. 

Common examples include:

•	 AWS CodeCommit

•	 GitHub

•	 Atlassian Bitbucket

10.
Practice 5: Continuous

Another pattern that a high-performing organization 
uses is something known as a deployment pipeline or 
a “single path to production”. This pipeline is a fully 
automated implementation of your build, deploy, test and 
release processes. This automation is part of a software 
delivery system composed of stages and actions. Each 
stage and action provides actionable feedback to the 
team and to the individuals who recently committed the 
code. A Continuous Delivery service is established to 
poll the version-control repository. When it discovers 
these changes, it kicks off an instance of this pipeline. 
Therefore, with every commit, team members can check 
the status of the pipeline to see if the recent changes 
were successful. If any of these actions fail, the pipeline 
stops and there should be no more commits to the 
repository until the fixes are applied. This approach 
works best when committing changes in small batches 
and deploying those changes to production in small 
batches. With this pipeline, you can potentially deploy/
release software to users several times a day or less 
often depending on your release cadence. This approach 
gives you the flexibility to deploy or release changes 



Intro to DevOps Automation on AWS | 11 

whenever you choose to do so as the act of deploying/
releasing is essentially a “nonevent.” 

Common examples include:

•	 AWS CodePipeline

• 	 Jenkins 2

• 	 CircleCI

• 	 Atlassian Bamboo

11.
Practice 6: Monitor

Once you have documented, written some tests, codified 
it, versioned the code, and made it continuous, you 
can monitor all activity so that you are both passively 
and actively informed of behavior that might require 
remediation. The exciting thing is that, on AWS, you 
can automate the provisioning of all your monitoring 
resources in code and you can automatically perform
remediation based on rules that you establish within your 
account. Some of the different ways you can monitor are:

•	 Amazon CloudWatch - “Amazon CloudWatch is a 
	 monitoring service for AWS cloud resources and the 
	 applications you run on AWS. You can use Amazon 
	 CloudWatch to track metrics.

•	 AWS CloudTrail - “AWS CloudTrail is a service that 
	 enables governance, compliance, operational auditing, 
	 and risk auditing of your AWS account.”ii

• 	 AWS Config - “AWS Config is a service that enables 
	 you to assess, audit, and evaluate the configurations 
	 of your AWS resources.”iii But what’s most exciting is 
	 that you can use AWS Config “to codify your 
	 compliance with custom rules in AWS Lambda that 
	 define your internal best practices and guidelines for 
	 resource configurations. Using AWS Config, you can 
	 automate assessment of your resource configurations 



12 |

	 and resource changes to ensure continuous 
	 compliance and self-governance across your AWS 
	 infrastructure” — in other words, automated 
	 compliance and remediation (if necessary).

•	 https://aws.amazon.com/cloudwatch/

• 	 ii https://aws.amazon.com/cloudtrail/

• 	 iii https://aws.amazon.com/config/

12.
Practice 7: Microservices

Microservices are small, independently deployable 
software services that communicate via contracts 
between other services (i.e. APIs). One page might 
have hundreds of services each run by small 
autonomous teams. DevOps Automation does not 
require microservices - but it works much better with 
microservices. On the other hand, microservices 
essentially cannot function well without DevOps 
Automation. Microservices is its own discipline and 
covered in several books; see the Additional Resources 
section for more information.

13.
Practice 8: Self-Service

The goal of self-service deployments is to give any 
authorized team member the ability to experiment, 
investigate, and make destructive changes that do not 
affect the canonical service that’s been committed to the 
version-control repository.

At any time, an authorized user on a team should be able 
to run a self-service deployment.

This is known as a pull-based mechanism as the team 
member does not need to wait for someone else to push 
the deployment to them. The team member should have 
some way to indicate the version of the service that they 
would like to deploy into an environment. This version 
should be based on changes that have gone through 

https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudtrail/
https://aws.amazon.com/config/


Intro to DevOps Automation on AWS | 13 

a pre-approved set of stages by the team so that there 
is a level of confidence of what has been automatically 
tested.

There are many ways to employ self-service deployments 
on AWS, but the AWS Service Catalog is one such 
service that can enable them in a structured manner.

For example, a developer might want to manually make 
changes to an environment as a way of learning how to 
automate the various components in the environment.

You will likely want to employ a self-destruct mechanism 
into the environment so that there aren’t too many 
unused environments laying around after being deployed.

14.
Getting Started

One of the worst things you can do is attempt to fix 
everything all at once or even feel like you have to get 
it perfect the first time. Every team and organization is 
different so there’s going to be some trial and error. Start 
small and iterate.

This section describes how you might assess and plan 
for your DevOps transformation when considering 
automation.

Assess
We often work with customers to formalize the process 
of preparing for, and kicking off such an endeavor. We 
call this service a “Stelligent Roadmap.” The service 
typically takes about two weeks and is highlighted by 
a very open and earnest examination of a customer’s 
“automation readiness state,” which results in an 
objective “Scorecard.”

A typical engagement consists of 50 questions that we 
ask teams and then verify through multiple sources. We 
use this to develop a detailed report of recommendations 
and scores across various dimensions. These 
recommendations are then used in developing a plan of 
action for transformation.



14 |

Our assessment includes organizational, process, and 
cultural aspects as well as tooling and automation.  
Here is a sample Scorecard (from the Stelligent  
Roadmap service).

If you are doing this on your own, some areas you 
might consider include:

•	 Active Configuration Monitoring & Automation

• 	 Application Monitoring & Automation

• 	 App/Service Deployment

• 	 Auditing

• 	 Binary Artifact Storage

• 	 Blue Green Deployments

• 	 Build Automation

• 	 Build Distribution Storage

• 	 Code Quality Analysis

• 	 Configuration Secrets Management

• 	 Container Architecture

• 	 Cost Monitoring

• 	 Database Provisioning & Updates

• 	 Decommissioning Resources & Automation

• 	 Deployment Pipeline Architecture

• 	 Disaster Recovery & Automation

• 	 Deployment Documentation

• 	 Event-Driven Monitoring

• 	 Feedback Mechanisms

• 	 Infrastructure and Deployment Diagrams

• 	 Local Development Environment

• 	 Logging & Automation

• 	 Manual Actions as part of a fully-automated workflow

• 	 Infrastructure Automation: Network, Node,  
	 Deployment Pipeline

• 	 Infrastructure Code Pipeline



Intro to DevOps Automation on AWS | 15 

• 	 Metrics: Pipeline Wait Times, Build Frequency, Cycle 
	 Time, Deployment Frequency, Mean Time to Detect, 
	 Mean Time to Recover

• 	 Production Deployment

• 	 Patterns: Autonomous Teams, Code Commit 
	 Frequency, Immutable Infrastructure, Self-Service 
	 Deployment, Stop the Line

• 	 Security Group or Firewall Automation

• 	 Self-Healing Automation

• 	 Storage Automation

• 	 Technical Onboarding

• 	 Version Control Usage

• 	 Automated Testing: Acceptance & Functional, 
	 Unit, Infrastructure & Deployment, Integration, 
	 Load & Performance, Penetration, Chaos (Resiliency), 
	 Compliance

Plan
Once we have assessed a team’s capability to deliver 
software, we also collaborate with customers to 
envision the desired automation state, and provide them 
a “Roadmap” to move from their current to desired 
state. Thinking and speaking in agile terms, we actually 
populate an initial backlog with epic stories that represent 
a prioritized set of things that need to be done to achieve 
the desired state.

Here is a sample Roadmap (sample from Stelligent 
Roadmap service). 

We have grouped the recommendations into phases that 
are intended estimate when tasks should be acted upon.

Phase 1 - Orchestrate Entire Software Delivery Workflow

Phase 2 - Improve Utilization & Costs

Phase 3 - Improve Security Posture



16 |

15.
Summary

In this whitepaper, you learned how you can codify all 
the things including documentation, tests, infrastructure 
and deployment pipelines. You also learned how to 
make all version-control commits go through a process 
of building, deploying, testing, and releasing software 
systems that are both actively and passively monitored 
via fully configurable managed services via AWS.

LOEPriority Phase1Epic Description

Deployment 
Pipeline Stages - 
Manual

Create an end-to-end deployment pipeline 
with manual approvals for manual actions 
and automated actions for existing 
automated actions

1-High 3-Low 1

Deployment 
Pipeline Stages - 
Automated

Commit, Acceptance, Exploratory, Preprod, 
Prod stages exist and are chained together 1-High 11-High

Version Control 
Usage

The entire software system is versioned 
(application code, configuration, tests, 
infrastructure and data) along with inary 
libraries used by the application in a single 
version control system

1-High 3-Low 1

Support 
Infrastructure 
Reproducibility

Each piece of the Support Infrastructure 
(NAT, Bastion, Binary repository, Continuous 
Integration server) is completely scripted 
and built by a CloudFormation template. 
Each piece of Support Infrasctructure has 
its own CloudFormation template with its 
own lifecycle

3-Low 2-Medium 1

Figure 3: Roadmap - part of Stelligent Roadmap service



Intro to DevOps Automation on AWS | 17 
@ Copyright 2019 Mphasis Stelligent. All rights reserved.

For more information, contact us at: info@stelligent.com

11710 Plaza America Drive 
Suite 2000 
Reston, VA 20190-4743 
Tel.: +1 888 924 4539

Here are some additional resources. The first link 
contains links to a myriad of popular blog posts, books, 
talks, videos, open source tools, and articles that people 
at Stelligent have published over the years.

https://stelligent.com/2017/01/03/sharing-for-the-people-
stelligentsia-publications/

• 	 https://github.com/stelligent

• 	 https://github.com/stelligent/cloudformation_templates

• 	 https://github.com/stelligent/cfn_nag

• 	 https://github.com/stelligent/mu

• 	 https://github.com/stelligent/config-rule-status

• 	 Stelligent Roadmap:  
	 https://stelligent.com/services/preparation/

• 	 https://stelligent.com/blog/

• 	 DevOps on AWS Radio:  
	 https://stelligent.com/category/podcasts/

• 	 https://twitter.com/Stelligent

• 	 https://dzone.com/refcardz/continuous-delivery/	 	
	 patterns

• 	 https://aws.amazon.com/devops/continuous-delivery/

• 	 Building Microservices: Designing Fine-Grained 
	 Systems (Newman)

• 	 Production-Ready Microservices: Building 
	 Standardized Systems Across an Engineering 
	 Organization (Fowler)

16.
Additional Resources

ABOUT MPHASIS STELLIGENT
Mphasis Stelligent provides DevOps automation professional services on AWS, enabling engineering teams to focus on creating software 
users love. Our goal is to work closely with customers to develop fundamentally secure infrastructure automation code, deployment pipelines, 
and feedback mechanisms for faster, more consistent software and infrastructure deployments.

mailto:info%40stelligent.com?subject=
https://stelligent.com/2017/01/03/sharing-for-the-people-stelligentsia-publications/
https://stelligent.com/2017/01/03/sharing-for-the-people-stelligentsia-publications/
https://github.com/stelligent
https://github.com/stelligent/cloudformation_templates
https://github.com/stelligent/cfn_nag
https://github.com/stelligent/mu
https://github.com/stelligent/config-rule-status
https://stelligent.com/services/preparation/
https://stelligent.com/blog/
https://stelligent.com/category/podcasts/
https://dzone.com/refcardz/continuous-delivery-patterns
https://dzone.com/refcardz/continuous-delivery-patterns

