
Intro to Continuous
Security on AWS

WHITE PAPER

CONTENTS

1. Abstract 3

2. Continuous Security 3

 a. Continuous Security Principles 4

3. What does all this have to do with Security 5

4. Stages in Continuous Security 6

 a. Commit Stage 6

 b. Acceptance Stage 7

 c. Capacity Stage 9

 d. Pre-Production and Production Stages 9

5. Key Takeaways 11

6. Conclusion 11

Intro to Continuous Security on AWS | 3

If you are planning on deploying resources on Amazon
Web Services (AWS), or if you have already started on
the journey and are looking for opportunities to improve
the security of your cloud environments, the tools and
patterns identified in this paper will accelerate your
integration of security into the development process.

As a move to the cloud increases the velocity and agility
with which you can deploy infrastructure, it places an
ever-increasing burden on your security organization to
validate the configuration of your cloud resources at an
accelerated pace. Often, organizations are left to choose
between giving up the agility and pace of innovation
afforded by a move to the cloud, or to accept greater risk
in their cloud deployments.

However, through the practice of Continuous Security, we
are able to ensure that security standards are represented
as code in an unambiguous way, and validate the security
of your cloud infrastructure during the development
process in a way that scales across an organization.

Continuous Security is the addressing of security
concerns and testing in the Continuous Delivery
pipeline, and is as much a part of Continuous Delivery as
operations, testing, or security is a part of the DevOps
culture. This article talks about ways of integrating
security testing/validation of both software and
infrastructure into the Continuous Delivery pipeline.

DevOps is a culture that emphasizes the collaboration
and communication of all IT roles necessary to develop,
deliver and support software and infrastructure through

1.
Abstract

2.
Continuous Security

4 |

automation while eliminating silos and delays caused
by organizational boundaries. Continuous Delivery is
a software development discipline where you build
software in such a way that the software can be released
to production at any time.

Continuous Delivery is used to build, test and deploy
code rapidly, ideally with the automated ability for any
given change to flow into production with the click of
a button. It relies on the complete automation of the
deployment process, such that bottlenecks, handoffs,
and human intervention are eliminated. You are capable
of deploying any code change immediately to production,
and are not shackled by an onerous and manual release
process. Only business drivers influence the decision
to deploy; uncertainty over the coordination and
execution of a labor-intensive deployment never enters
the equation.

Automated testing is fundamental to the Continuous
Delivery process. Testing in the pipeline both eliminates
delays from manual verification of code, as well as
ensuring consistent verification of functionality. Various
types of testing are performed in all of the stages of the
pipeline in order to provide feedback to the developer
as rapidly as possible. A typical pipeline is depicted
in Figure 5.

Continuous Security Principles
• Automate everything, including security!

• If security is difficult or painful, do it more often (and it always is).

• Keep everything in source control, including your security posture and tests.

• Done means secured.

• Build security in.

• Everybody has responsibility for security.

• Improve security continuously.

Intro to Continuous Security on AWS | 5

3.
What does all this have to do with Security?

Figure 1: Continuous Delivery Process

Goal:
Test the system under
real world conditions

Pipeline Actions:
Performance Tests
Load Tests

Security Tests:
OWASP ZAP Pen
Test OpenSCAP
Image Testing

Goal:
Go/no-go decisions
for blue/green
deployments

Pipeline Actions:
Approve/Reject

Security Tests:
Host Compliance
and Vulnerability
Assessment

Goal:
Make deployments a
business decision

Pipeline Actions:
Build Pre-Prod Stack
Data Migration
Blue/Green
Deployment

Security Tests:
Ongoing Environment
Analysis and Reporting

Goal:
Fast feedback for
developers

Pipeline Actions:
Unit Tests Static Code
Analysis

Security Tests:
Change Analysis
Security Validation of
Infrastructure Code

Goal:
Comprehensive testing
of the application and
its infrastructure

Pipeline Actions:
Integration Tests
Acceptance Analysis

Security Tests:
Infrastructure Analysis

Capacity Pre-Prod ProductionCommit Acceptance

In the cloud, we talk often about infrastructure-as-code,
spinning up compute resources on demand. But we
need to go further and treat everything as code. Sure,
we create instances from code, but we also codify
networks, security, monitoring, operations and feedback
mechanisms. The same Continuous Delivery process that
allows you to test, verify and deploy application changes
applies equally to networking, security monitoring, etc.,
now that those functions are represented as code.

And while Continuous Delivery is typically looked upon
as an accelerator for developers, allowing business
value to be deliver much more rapidly, an interesting
transformation takes place when security is made a
core focus of the pipeline. Change occurs more rapidly,
but at the same time governance and security are
drastically improved. This is due to the iterative testing
of incremental change and the capturing of security
requirements as code, rather than being manually, and
often inconsistently, applied.

6 |

4.
Stages in Continuous Security

Commit Stage
What might it look like to validate your security posture
in the Continuous Delivery pipeline? Referring back to
the pipeline graphic (figure 1), the first stage is Commit.
This stage provides very rapid feedback to the developer,
as the code is analyzed before building. For security,
this means making a decision about the resources and
changes that would be triggered by executing the code,
before actually triggering resource creation/modification.
Not only does this provide rapid feedback (literally
seconds), but has powerful security implications in
that infrastructure code that would otherwise expose a
vulnerability can be vetted and prevented from
being provisioned.

In order to bring this type of commit stage testing to
CloudFormation, we have created an open source tool
called Stelligent cfn_nag, which builds a model of what
your templates would do, and analyzes it against a set of
user-controllable rules. Only if the template passes all
tests, will it be subsequently executed.

Security Static Analysis of AWS CloudFormation
Security static analysis builds a model of templates
in order to verify compliance with best practices and
organizational standards. This can be a powerful tool
to stop bad things before they happen. A security
organization can define their policy in code and have all
development efforts unambiguously verify against that
standard without manual intervention.

Capacity Pre-Prod ProductionCommit Acceptance

https://github.com/stelligent/cfn_nag

Intro to Continuous Security on AWS | 7

The Stelligent cfn_nag tool inspects the JSON of a Cloud
Formation template before convergence to find patterns
that may indicate:

• Overly permissive IAM policies

• Overly permissive security groups

• Disabled access logs

• Disabled server-side encryption

Acceptance Stage
Once code passes the Commit stage, it is actually
built and acceptance testing is performed. In terms
of infrastructure code, this means AWS resources are
created. Whenever you create AWS resources, you are
creating or modifying your security posture, whether
you want to or not. AWS has released a powerful tool
for analyzing resources against security considerations,
called AWS Config Rules, perfect for resource verification
in the Acceptance stage. Implementing AWS Config
Rules in the Continuous Delivery pipeline presents some
interesting challenges, which will be covered in detail in
an upcoming article.

Testing Infrastructure Changes
Problems to solve:

• Prevent infrastructure changes that violate company
security policies.

• Need the ability to codify security rules and get
notifications when violation occur.

• Ability to execute on-demand compliance testing.

Capacity Pre-Prod ProductionCommit Acceptance

Figure 2: Continuous Delivery Process - Commit Stage

Goal: Fast feedback for developers

8 |

Stelligent config-rule-status:

• Config-rule-status is an open source tool that enables
continuous monitoring and on-demand testing of
security compliance for infrastructure running on AWS.

• Config-rule-status provides a CLI for deploying and
managing resources on AWS. It will setup the AWS
Config service to monitor the infrastructure and create
AWS Config Rules to enable continuous compliance
testing and reporting. The compliance rules are
implemented as Lambda functions. Several rules are
included by default and new rules can be easily added.
Config-rule-status enables on-demand compliance
testing via a Tester Lambda function that aggregates
the compliance status of all AWS Config Rules and
outputs a JSON response that contains the status for
each rule and an overall status of PASS or FAIL.

• Config-rule-status can be run from a local computer,
but is designed to run on a build server as part of
a continuous delivery pipeline. The Tester Lambda
function should be used during the Acceptance
stage of the pipeline to ensure that non-compliant
infrastructure changes do not get deployed to
production. The Tester can be invoked from the build
server using the included CLI, or it can be invoked
from anywhere by using the AWS CLI.

Capacity Pre-Prod ProductionCommit Acceptance

Figure 3: Continuous Delivery Process - Acceptance Stage

Goal: Comprehensive testing of the application and its infrastructure

https://github.com/stelligent/config-rule-status

Intro to Continuous Security on AWS | 9

Pre-Production and Production Stages
The last two stages are Exploratory and Production.
Production is the stage that promotes a candidate
environment that has passed all previous stages into
production. Exploratory is really an out-of-band stage
that provides a self-service model for creating clones of
the production environment for experimentation. We’ll
focus on Production stage and leave Exploratory for
another day.

Production is a very interesting stage. In typical
software development CD pipeline, Production is the
end of the line. Hit this stage and you are done. But
not so much with security. While your application is
deployed and immutable, your security posture is
still subject to change. You may have firm control of

Capacity Stage
After making it past the Acceptance stage gauntlet, We
move on to the Capacity stage. Capacity is where we
build and validate an environment capable of going into
production. Since you anticipate this environment could
go live, you want some in-depth security analysis here.
One of our favorite security tools for evaluating web
applications is the OWASP Zed Attack Proxy (ZAP). ZAP
is typically used manually through a GUI, which doesn’t
work well with our “automate everything” mindset.
Utilizing Behave and some custom Python, we are able
to parse the JSON output of ZAP and assess the results
via an english-like DSL.

Capacity Pre-Prod ProductionCommit Acceptance

Figure 4: Continuous Delivery Process - Capacity Stage

Goal: Test the system under real world conditions

10 |

your CloudFormation templates through the pipeline,
but resources can be added, changed and deleted
independent of your templates.

For this reason, we strongly recommend that the
Production stage provide periodic, ongoing testing of
the security of the live environment. Ensuring that an
environment remains in conformance with your rules is
compliance, and can take the form of internal compliance
with your own best practices, or compliance with
industry/governmental requirements.

An interesting tool we are currently integrating into the
CD pipeline is Inspector, an AWS security assessment
service. This tool is still in preview mode, so more from us
on integrating it as it hits general availability. We are also
experimenting with integrating other open source tools
into our pipeline, such as OpenSCAP.

Continuous Delivery is a discipline that provides
rapid feedback and consistent, repeatable validation
of software and infrastructure. There are a wealth of
tools that provide valuable insight into your security
postures. Leveraging these tools within your CD pipeline
helps promote security to a first-class citizen of the
development process. Please join us for the ensuing
articles that dive much deeper into the Continuous
Security pipeline, and how to integrate security testing
the Stelligent way.

Capacity Pre-Prod ProductionCommit Acceptance

Figure 5: Continuous Delivery Process - Pre-Production & Production Stages

Goal: Go/no-go decision for blue/green deployment

Intro to Continuous Security on AWS | 11

5.
Key Takeaways

• Infrastructure IS code, treat it as such. Applying
modern development techniques such as TDD and
Continuous Delivery yields immense value.

• Infrastructure is part of the solution in application
development now. Its development should be
integrated into the application development process,
treating the solution as an integrated entity.

• From within development team, CD reduces cycle time
for releases and improves confidence in released code
(including infrastructure code).

• From outside, it allows security/governance/
compliance to inject best practices as automated
gates in the delivery process without introducing
delays for review and approval. This allows for control
at scale without grinding to a halt.

6.
Conclusion

In this paper we have covered some of the basic
techniques of applying security as code through the
Continuous Delivery pipeline; pulling security into the
DevOps culture, where it can provide immense value
mitigating risk while enabling development teams to
build security in.

For more information, please drop by our Github
repositories (https://github.com/stelligent), our blog site
topic on Continuous Security (https://stelligent.com/
category/continuous-security/), or contact us at
info@stelligent.com.

To stay updated on DevOps best practices visit

www.stelligent.com or contact info@stelligent.com

@ Copyright 2019 Mphasis Stelligent. All rights reserved.

For more information, contact us at: info@stelligent.com

ABOUT MPHASIS STELLIGENT
Mphasis Stelligent, a professional services and consulting firm with deep expertise in DevOps automation services on Amazon Web Services
(AWS), enables security-conscious enterprises to focus on developing software users love by leveraging automation on AWS. Our goal is to work
closely with customers to develop fundamentally secure infrastructure automation code, deployment pipelines, and feedback mechanisms for
faster, more consistent software and infrastructure deployments. By embedding with our customer’s engineering teams, we empower customers
through education and knowledge transfer of our expertise while developing the automation to make them self-sufficient on AWS. As a Premier
AWS Consulting Partner, AWS Public Sector Partner, and AWS DevOps and Financial Services Competency holder, we use our demonstrated
expertise to help customers benefit from continuous AWS innovation.

11710 Plaza America Drive
Suite 2000
Reston, VA 20190-4743
Tel.: +1 888 924 4539

